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Design-Oriented Leading-Edge Thrust Force Prediction

for Supersonic Lifting Surfaces

Wei-Lin Li* and Eli Livnet
University of Washington, Seattle, Washington 98195

A design-oriented method for evaluating the leading-edge (LE) thrust force on supersonic lifting sur-
faces with subsonic LE is presented. The method is developed to overcome numerical noise and nonsmooth
drag predictions observed when currently attainable LE-thrust techniques are used for wing planform
shape optimization. The method is an extension of a design-oriented unsteady supersonic lifting surface
capability developed previously for aeroservoelastic shape optimization of wings. It is a panel/lattice
method where assumed pressure-weighting functions, taking the LE singularity into account, are pre-
scribed to the LE panels while constant pressure panels are retained elsewhere. Explicit expressions for
aerodynamic influence coefficients are retained over most of the wing, except for cases involving the LE
panels, where numerical integration must be used. Planform shape sensitivities of the LE thrust and wing
pressures are obtained using a combination of analytic and semianalytic techniques. LE thrust force
predictions for various configurations are in good agreement with known analytical solutions. Smooth
and well-behaved LE thrust force and thrust force sensitivities predictions indicate that this method is
suitable for wing-shape design optimization applications based on gradient-based mathematical program-

ming techniques.

Nomenclature
Ajk = (Ko)jk/o'k
reference length

S
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Cr = total thrust force

C, = thrust force per unit length in spanwise
direction

D = design variable

d; = half-width of the jth panel

g(yo) = function of chordwise integration

I = influence coefficient from LE panel

(Ko)jx = influence coefficient from non-LE panel

M = flight Mach number

N = number of wing panels

qp = dynamic pressure

R = Vxg — Bo

L = thrust force on the jth LE panel

w = nondimensional downwash

Xis, Y15 = coordinates of the LE break

Xig = LE x coordinate

X0, Yo = local coordinates

Xo,.» Xo, = upper and lower limits of the chordwise
integration

o = angle of attack

B = /M2 -1

Ap = pressure differential of upper and lower
surface

Ap = coefficient of the LE weighting function

A = LE sweep angle

& m = global coordinates

3 = influence area or integration area for a

receiving point
LE
LE = area of LE elements inside 2
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= area of the kth panel
(o = area of the kth panel inside a Mach cone
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Introduction

HE development and assessment of numerical techniques

used to evaluate leading-edge (LE) thrust forces in sub-
sonic and supersonic wing design' ™" were done in the past
from an analysis perspective. That is, convergence, numerical
performance, and correlation with test data were the major
criteria used for evaluation. The computational efficiency of
resulting prediction techniques led to their integration with
mathematical programming techniques for the optimization of
camber distribution of subsonic and supersonic wings.

When an analysis capability is examined from a design-ori-
ented perspective, however, additional characteristics become
important. Speed of computation and accuracy have to be aug-
mented by efficient evaluation of sensitivities with respect to
design variables. Availability of intermediate design variables
and intermediate response functions becomes important for
any approximation-concepts-based optimization.”" Indeed, a
design-oriented analysis capability (DOSA) may be quite dif-
ferent in technique, structure, and code organization from a
corresponding analysis capability. In the area of structural op-
timization, this has led to the development of modern structural
synthesis tools, such as GENESIS, ' where sensitivity, approx-
imations, and design considerations had influenced code de-
velopment from the outset.

The substantial investment over the years in computational
analysis tools in many disciplines, and the experience gained
with them, led to the development of optimization strategies,
in which these tools are used as black boxes."'® This is mo-
tivated by the realization that optimization specialists working
in the multidisciplinary optimization area (MDO) cannot be
in-depth experts in all relevant disciplines. There is a reluc-
tance to invest substantially in the development of new design-
oriented analysis tools, and, as new analysis techniques are
developed an optimization strategy tailored to the manipula-
tion of black-box tools has the flexibility to replace outdated
elements. The growing power of automatic differentiation'’
makes it possible to convert analysis codes to codes that gen-
erate analysis and analytic sensitivity information. The moti-
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vation to use well-established analysis tools for MDO, rather
than redevelop design-oriented new tools, then, only becomes
stronger.

To a great extent the success of structural synthesis'? is owed
to the insight its contributors had in the area of structural anal-
ysis. It is hard to imagine the discovery of reciprocal approx-
imations, force approximations, and Rayleigh quotientapprox-
imations, to mention just a few examples,”> without in-depth
understanding of how structural systems behave, and what
characterize the mathematical models used. Any black-box ap-
proach, with or without automatically generated analytic sen-
sitivities,'” faces the risk of missing valuable information,
which can affect the automated design process considerably.
Without in-depth understanding of the models and computa-
tional tools in each discipline involved, it is hard to identify
effective intermediate design variables and intermediate re-
sponse functions, whose utilization can improve approximation
accuracy dramatically. Moreover, if noisy predictions are gen-
erated by an analysis tool when design variables are varied,
and if discontinuous predictions appear, it is hard (without an
in-depth look at the analysis and its numerical implementation)
to know when these prediction characteristics reflect actual
physical behavior of the modeled system and when they are
caused by just the numerical approach used.

In recent MDO studies of High Speed Transport (HSCT)
configurations'® it was found that aerodynamic predictions
based on the concept of attainable LE thrust®”® displayed
wavy, nonsmooth behavior when the planform shape of the
wing was varied. The waviness seemed to be caused by the
numerical solution technique used and not by any real effects.
One method of overcoming this difficulty, as pursued in Ref.
18, is by the development of smoothing techniques for the
extraction of useful function and sensitivity information out of
the noisy data. Indeed, that approach might be helpful with
other black-box analysis tools portraying nonsmooth behavior.

In the work described in this paper, an effort was made to
overcome the nonsmooth behavior described in Ref. 18. This
is motivated by the need to re-examine aerodynamic prediction
techniques in the light of design implementation requirements,
improve design-oriented features, and gain insight that may
lead to the development of accurate approximations based on
effective intermediate design variables and response functions
in aerodynamics. A similar effort,”** based on the simple for-
mulations of Refs. 23-26, has led to the development of de-
sign-oriented analysis and shape-sensitivity capability for un-
steady aerodynamics of wings with control surfaces.

In this paper, a method is presented for obtaining an LE
thrust—force prediction for supersonic wings subject to plan-
form shape variation, in a way that avoids numerical noise and
wavy behavior. Simplicity of formulation and computational
speed are pursued as well as reliable sensitivities with respect
to shape design variables.

Method Development

The expression of the LE thrust force coefficient is given in
Ref. 27 for subsonic lifting surfaces as well as for supersonic
wings with subsonic leading edges. In current notations the
nondimensional thrust force per unit length in the spanwise
direction is expressed as follows:

C, = (m/8)tan A1 — B> cofA - (ApVx — e, (D
The finite limiting value

ApVx = xi6) |y (2)

indicates that the singularity of Ap in the vicinity of the leading
edge is of the form 1/4/x — x;x under the assumption of lin-
earized, small disturbance flow.

y
Mach Line
o & Weighting Function
i Applied to L.E. Row
\\\j\\ N )
~L Ik Constant Pressure Boxes
X

Fig.1 Pressure-weighting function is assumed for elements in the
LE row.

Obviously, the key to accurate evaluation of the theoretical
LE thrust force depends on the correct and reliable estimate
of this limiting value. Assumed pressure lifting surface solution
methods may not yield desirable accuracy, even when the LE
singularity is imposed with appropriate weighting func-
tions.”>" That is because collocation points, integration for-
mulas, and pressure solutions are usually optimized for mini-
mum error of integral measures such as lift, moment, and other
generalized aerodynamic forces, and not the pressure itself. In
the case of Mach box methods, the resulting jagged LE intro-
duces pressure fluctuations over the wing. Moreover, for Mach
box or other panel methods, curve fitting and extrapolation of
pressure distributions in the LE area are required to obtain the
limiting value [Eq. (2)], since pressure is usually assumed con-
stant in every element over the wing. The numerical techniques
have to rely on empirical correlations with theoretical solutions
of linearized flow for simple geometries.> Variation of aer-
odynamic panel size may be required in the chordwise direc-
tion. When the planform changes shape, these curve-fitting and
panel-spacing techniques, as well as inaccuracies in modeling
the geometry of the LE, all contribute to fluctuations of the
resulting LE thrust force prediction.

LE Weighting Function

In Ref. 21, a lifting surface panel/lattice solution method for
supersonic wings has been introduced, based on the accelera-
tion potential formulation. Since the motivation for develop-
ment arose because of the need to develop analytic aerody-
namic sensitivities with respect to planform and control surface
shape, aerodynamic influence coefficients in the resulting ca-
pability have been expressed explicitly in terms of wing shape
design variables, mesh fineness, Mach number, and reduced
frequency. These influence coefficients are obtained by area
integrations over sending aerodynamic boxes, which may be
completely within, or partially within the forward Mach cone
of a receiving aerodynamic box.

In the current study, in an effort to capture pressures near
the LE more accurately, a weighting function is applied to the
row of the LE elements, where the singularity is most influ-
ential, while constant pressures are retained for the rest of the
elements on the planform (Fig. 1). This means that the theo-
retical full thrust [via the limiting value, Eq. (2)] and the lift
over the wing are obtained from the solutions simultaneously,
avoiding curve fitting and extrapolation. Also, because the in-
tegration over the area of sending panels is highly accurate,
no geometric modeling discontinuities, jagged shape, and re-
sulting fluctuations of the pressure distribution appear.

The analytic solution for pressure distribution on a flat delta
wing in linearized supersonic flow for the case of subsonic LE
can be obtained from conical flow theory,” in nondimensional
form, as

4o
Ap(x, y) = 3
P y) E(k)tan AN/1 — (y/x)* tan’A )
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where E(k') is the complete elliptic integral of the second kind
of modulus k', and k' = \/1 — B2 cot®A.

Since the solution, Eq. (3), is exact only for delta wings, the
common procedure in assumed pressure methods for general
configurations employs a series of functions of x and y, mul-
tiplied by the singularity of Eq. (3) and other singularities or
known pressure behavior, such as along trailing-edge, control-
surface hinge lines, and wing-tip pressure variations.” In the
current approach, the choice of the weighting function is sim-
plified with only the LE elements in consideration. Based on
Eq. (3), the weighting function used here for supersonic lifting
surfaces with subsonic LEs is

Ap

Ap = —— 4
i \/1 - ()CIE/)C)2 @

where x; g is a function of y, and the origin of the x — y
coordinates is set in the LE of the wing root. While in all other
boxes the unknown pressure is Ap, the unknown in all LE
boxes is Ap.

The integral equation based on the acceleration potential for
lifting surfaces in steady supersonic flow is written in the fol-
lowing normalized form for given M:

1
w(x, y)=8—ﬂJ'pr(§, MK (xo, yo) d€ dm (5)

where the integration area 3 is bounded by the forward Mach
cone emanating from the receiving point (x, y) and by the
edges of the lifting surface. For steady flow, the kernel function
is given by

K = 2x0/(Ry3) (6)
where

Xo=x — §, Yo=Yy —m

B=VM>—1

With the substitution of Eq. (4), the integral relation of Eq.
(5) is split into contributions from LE boxes and non-LE
boxes, and it is rewritten as

(7

R =\Vx3— B,

§mw, = > (KjBpi+ > Ldj, j=1.2.....N (8

0 ES OKEZ g

2Xxo

(KO)J-,(=J'J' ﬁdg d’T] (9)
ULyo\/x0* Byo

1 2X¢
[/'k= 2. 2 2, 2dg d’T] (10)
! J' ap \/1 — (&6/8) yoz\/xo - Byo

The pressures and weighted pressures, Ap; and Ap,, respec-
tively, are unknowns. N is the number of the aerodynamic box
elements in the grid system, X, denotes the area of the LE
elements inside the forward Mach cone originating at receiving
point (x,, y), and 2, is the rest of the wing surface inside the
Mach cone. The downwash (receiving) points are placed at the
95% center chords of all the panels.

While the integrals (K,);, can be evaluated analytically with
the formulations given in Ref. 21 (for all cases, whether the
sending box is completely or partially within the Mach cone),
the integrals I are evaluated numerically, as shown in the
following section.

Fig. 2 Integrations in chordwise and spanwise directions in local
coordinates.

Numerical Integrations

With numerical integrations in both chordwise and spanwise
directions, the integral, Eq. (10), is rewritten as

[jk=J' = &(yo) dyo (1)

5 [0}
Yo

X0 Yo
1 X — Xo Xo

eog Vo, — Xo V2X — Xo, — Xo VX0 — B0

8 dx,o

(12)

The integration variables have been changed to the local
coordinates, and yo, and yo, are the spanwise left and right
limits of the integrating area o ;. The variable xo _ is the co-
ordinate of the wing LE, and x,, is the lower bound in chord-
wise direction, which may be on the Mach line or the TE of
the element, as illustrated in Fig. 2. The chordwise integrations
are first calculated to obtain the function g(y,), at selected
spanwise stations y, (determined by spanwise integration for-
mulas), before the spanwise integral is carried out to yield the
final result of I, Integration techniques similar to those de-
scribed in Ref. 29 are used to evaluate the integrals.

Chordwise integration is carried out with the Tschebycheff—
Gaussian quadrature rule for both cases of x,, being on and
not on the Mach line. For the latter case, the integrand of Eq.
(12) is not singular at x,,. Numerical tests showed, however,
that overall good accuracy could be achieved for both cases
with the same formulation, when 25-30 chordwise integration
points were used.

Gaussian quadrature is used in the spanwise integrations
with a predetermined number of integration points and tabu-
lated abscissas and weights. In cases when y,, >0, yo, < 0, a
double pole singularity yo> appears in the integrand, which
occurs when influence coefficients are evaluated because of
elements directly upstream of the receiving element, and in the
case of calculating the effect of an element on itself. Let the
function g(y,) subtract its Taylor series expansion at yo, = 0,
the integral of Eq. (11) then becomes

oA d o
Lip=2 f {g(yo) — [£(0) + g'(0)yo + -]} y—yz

Yo 0

+2% [g(O)+g'(0)yo+"']%=11+12 (13)

” [0}
Yoz

The singularity is moved to the second integral in Eq. (13),
and is evaluated analytically in the sense of Mangler’s inte-
gral™ to yield the following results.

The first integral /, now is regular and can be evaluated
numerically with the Gaussian quadrature rule:

L =—2g(0) (L — L) + 2g'(0) €n

04 Op

Yo,

+ o (14)

Op
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Only g(0) and g'(0) terms are kept for the expansion series in
Eq. (13), because the other terms are polynomials that can be
integrated exactly with Gaussian quadrature formula and
would cancel each other with their counterpart in the second
integral I,. The derivative g'(0) is calculated numerically using
five-point finite differencing at y, = 0.

Note, though, that in the case of an LE element influencing
itself, the point x,, = 0 moves from the left to the right side
of the Mach cone as it crosses yo = 0. There is a discontinuity
if the derivative, as a result [g'(0") # g'(07)]. A similar dis-
continuity may appear if a Mach line cuts a sending box. Using
the five-point finite differencing, this discontinuity is smeared
and an average value is used. Since the problem occurs in a
very small region of the overall integration area for aerody-
namic influence coefficients, the effect of this averaging is ex-
pected to be small (as, indeed, the accuracy of results indi-
cates). Therefore g'(0) is evaluated in the same way on all LE
boxes, whether they are self-inducing or not.

Suction Force

The unknown pressures and LE weighted pressures are
found from the system of equations, Eqs. (8), usually using
LU decomposition, to yield Ap; for the LE elements and Ap;,
for the others. Then the limiting value at jth LE element is
obtained as [Eq. (4)]

lim (Ap\/x — Xig) = \/[(Xu:)j/z]Aﬁj (15)

XX g

where the coordinate of the LE (x;z); is evaluated at a spanwise

station at the center chord of the element. The thrust force on

the jth LE element is calculated from Eq. (1) as
t;=C,-2d,

= (mw2d,/8)tan AN/1T — B2 coA,- {[(x),/21(A5)}

(16)

where d, is the half-width of the element and A, is local sweep
angle. To be consistent with the notation of the supersonic
capability in Ref. 21, the thrust force is rewritten as

1= (Tr/S)dj(-xLE)j V (Slz)f - 82' (Aﬁj)z

(Si2); =tan A; = (xo1 — X62)/(Yor — Yoo)

a7

where subscripts 1, 2 denote the upper two corner points of
the jth trapezoidal LE element. The C+is then obtained by the
summation of all the LE panels with thrust force

Cr= 2 t (18)

Since all of the variables used in the calculation are normal-
ized, no further reference length and area are assigned to nor-
malize C, and C.

Shape Sensitivity Evaluations

Except for contributions of LE panels, the formulation here
is identical to the formulation of Ref. 21, where explicit ex-
pressions were obtained, and analytic sensitivities with re-
spect to planform shape presented for the aerodynamic influ-
ence coefficients. To obtain analytic sensitivities of the LE
panel integrals [Eqs. (11-14)], automatic differentiation
could be used. However, supported by satisfactory results in
the present study, a semianalytic approach has been adopted,
as follows.

The sensitivity of thrust force on jth LE element, with re-
spect to D, is obtained from the differentiation of Eq. (17)

oy (2 ahy | 1ad 1 oG,
ab ~ 7| Ap, oD d,dD = (xp); oD

(Sl2)j 6(512)j:| (19)

(Slz)f - B2 oD

The sensitivity of the total thrust can then be calculated with
the summation

aCy ot
— = > — 20
b= 2D 0)

While the derivatives of d;, (x.5);, and (S,,); are explicitly ge-
ometry-related and can be calculated analytically, the sensitiv-
ities of {Ap} have to be found d from the aerodynamic equa-
tions. The semianalytic method is used in the current study to
obtain d{Ap}/dD for simplicity.

The following equations result from the differentiation of
Eqs. (8), with 9f,./dD and d(Ap)/dD as unknowns:

9 (AP
2, A Jg 2 b agk
= 0rE2 g
aw; AA, AL,
~ — - - A
87D A~ Ap ;LE AD “Px
j=1,2, LN (21)
where
Ajk = (Ko)jk/o'k
(22)

ﬁ( = Apk'o'k

The notations AA;/AD and AI,/AD are used to denote first-
order, forward finite difference differentiations, and the vector
d{w}/oD is evaluated analytically for given camber distribu-
tions.

The solution of the sensitivity problem, Egs. (21), requires
only forward and backward substitution, since the LU-decom-
posed system matrix is available from the analysis step. After
the calculation of d{Ap}/dD, along with the derivatives of the
element half-width {d}, LE {x:&}, and the slope {S..}, the
sensitivities of the LE thrust forces are evaluated with Egs.
(19) and (20). The sensitivities of aerodynamic generalized
lifting forces and moments can be obtained simultaneously.

Results and Discussions

To assess the accuracy and reliability of the LE thrust force
prediction with the present method, a few numerical calcula-
tions for simple planforms are performed and compared with
available analytical results. In addition, since the method is
aimed at calculating both LE thrust and normal forces over the
wing simultaneously, it is important to assess the accuracy of
pressure predictions as well. Therefore, test cases are chosen
to compare with the results of theoretical analyses as well as
results obtained by the supersonic capability developed in Ref.
21, on which the current method was based.

As to the sensitivity analysis, attention is focused on the
smoothness of predicted behavior of the thrust force with plan-
form shape variations. As previously discussed in the Introduc-
tion, oscillatory predictions would create difficulties in gradient-
based optimization. Parametric studies of a swept wing and an
HSCT configuration similar to that used in Ref. 18 are presented
with thrust force predictions as well as the semianalytic sensi-
tivities with respect to planform shape design variables.
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Suction Force Distribution

The significance of the theoretical LE thrust is that it pro-
vides a design ideal, as well as the information needed for the
evaluations of sustainable LE thrust. The available analytic
results from conical flow theory, for flat delta wings™ and
cranked planforms,® are used in the following text to compare
with the numerical predictions.

cjo’
30 70° 8-Wing 10x10 BeotA
[e] Present Method
. 0.167
Analytic
2.5
20 0.407
1.5
0.630
1.0
0.834
05
0.0 2
0.0 Y

Fig.3 Numerical LE thrust distributions of a 70-deg sweep delta
wing for a range of B cot A values, compared with the solutions
of conical flow theory. A 10 X 10 mesh is used.
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Fig. 4 Comparison of the thrust distributions calculated for var-
ious grids of a 60-deg sweep delta wing, at Mach 1.2.

Delta Wings

The analytic solution of conical flow theory, Eq. (3), when
X — Xig, gives the limiting value at the LE as

lim (ApVx — xip) = RV2WER )Ny cot A (23)

X N |

which, in turn, leads the following linear thrust distribution in
the y direction for flat delta wing:

B a1 — B2 cotzA.
o [EGkD)

(24)

It is seen that, for delta wings normalized with the semispan,
LE thrust C,/a” is a function of B cot A only. The first group
of numerical tests therefore examines the accuracy of the thrust
predictions with different values of B cot A. Calculations are
carried out for the delta wing planform of 70-deg swept angle,
and Mach number 1.1, 1.5, 2.0, and 2.5, respectively, corre-
sponding to B cot A values 0.167, 0.407, 0.630, and 0.834, on
a 10 X 10 uniform mesh. In Fig. 3, the numerical results are
shown together with the analytic solutions of Eq. (24), and
good agreements are observed over the spectrum of the 3 cot
A values.

Additional calculations test the effect of grids on the nu-
merical results. Three sets of uniformly distributed grids, 15
X 10,10 X 10, and 10 X 5, are used to calculate the LE thrust
distribution on a 60-deg sweep delta wing at Mach 1.2 and
compare with the conical flow solution in Fig. 4. It appears
that results with all different grid sets agree with the analytic
solution quite well, a desirable characteristic of the current
procedure, especially valuable for planform shape optimiza-
tions where the variations of the geometry usually result in
changes in panel sizes. High sensitivity of the solutions to grid
selection could hinder the convergence of the design optimi-
zation process, or give false results.

Cranked Wings

A cranked wing, shown in Fig. 5, consists of two panels of
different LE sweep angles A, and A,. Analytic solutions are
given in Ref. 35 for a flat cranked wing, where the inboard
panel has subsonic LE (tan A, > ), and where A, > A,. The
thrust solution on the inboard portion of the LE is the same

O.OL L L L L ) | L L
ofy 05 1.0 y
\
\
\
05N
1.6 K
LOK|
\
N
. 02 §

2.0

Fig. 5 Cranked planforms and grids for which LE suctions are calculated.
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as Eq. (24); whereas the outboard part of the thrust, existing
when tan A, > B, can be expressed in present notations as

202 [2E(y) — (1 — vk |
C ==
oy E(k")
+
X 1+m V1 — m3y + x cot A)) 25)
1 + m,
where

x=xp+ (y — yws)tan A,
v=VI1 — m)t — m)VI(1 + m)t + m)]  (26)
t = B(ylx),

m; = B cot A, m, =B cot A,

and (x.g, y ) are the coordinates of the break point on the LE.
The functions K(-y) and E(vy) are the complete elliptic integrals
of the first and second kind of modulus 1.

Numerical calculations are performed for two chosen X,s
values of the planform shown in Fig. 5, at Mach 1.2. The
numerical thrust prediction for X;5 = 0.65 (A, = 65.2 deg and
A, = 53.6 deg) on a 10 X 10 uniform mesh, along with the
corresponding analytic solution, are shown in Fig. 6. Two sets
of grids, 10 X 10 and 20 X 20, are used to calculate the thrust
distribution of the wing with X, 5 = 0.80, which has A, = 69.4
deg and A, = 48.8 deg, and the results are shown in Fig. 7.
Good accuracy of the LE thrust can also be achieved in the
outer panel of the cranked wing and only slightly different
thrust distributions are observed for the coarse and fine grids
used.

Pressure Distribution

In addition to the unknown {Ap} of the LE elements, lifting
forces on all other planform surface elements are obtained di-
rectly after solving the system of equations [Eq. (8)]. The pres-

clo’ M=1.414 X,,=0.65
1ok Analytic
o Present Method
08
0.6
0.4+
0.2}
0'%.0 012 014 016 018 L‘O y

Fig. 6 Comparison of the thrust distributions obtained with the
present method and the conical flow solution for the cranked wing
of X5 = 0.65.
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Fig. 7 Comparison of the thrust distributions for the cranked
wing of X;5 = 0.80. 10 X 10 and 20 X 20 grids are used for the
numerical calculations.

sure on the LE element j is then evaluated with the assumed
pressure function, Eq. (4), by substituting with the x coordi-
nates on the panel at the half-center-chord x;, and the center-
chord LE (xp), i.e.,

Ap.
Ap, = ———bt 27)

VI - [l

Comparisons of pressure distributions with the results of an-
alytic solution and the supersonic capability of Ref. 21 are

-1.0 0.0 g L L0y
0°
\
104 Yx
I M=1.44
F AR=1.85
204
a) x b
wol e Analytic
© o Supersonic Capability
8.0r o Present Method
601 O
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o 40r g\\@
S
20 PR
Q
00 ‘_“_9____9\/0/,
by %o y) 0.4 06 08 10
100} ©
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Ep 40t
< i
20} o
)
0.0} TR e e g .00
o 2%% 02 0.4 06 0.3 )

Fig. 8 Comparisons of pressure distributions on the 60-deg con-
stant-chord sweptback wing: a) geometry and grids, b) x/chord at
75% semispan, and ¢) x/chord at 95% semispan (compared with
Ref. 21).

e 70° 8-Wing M=2.0
——— Analytic

40k ¢ Supersonic Capability
A o Present Method
ap
o

3.0F

75% Semi-Span
2or 25% Semi-Span
L9% 02 04 06 038 Lo

x/Local Chord

Fig. 9 Comparisons of pressure distributions on a 70-deg delta
wing at 25 and 55% of the semispan. 10 X 10 mesh is used for
numerical calculations (compared with Ref. 21).



LI AND LIVNE 463

made for a constant-chord sweptback wing with aspect ratio
1.84 and Mach number 1.44 (Fig. 8a), and a 70-deg sweep
delta wing at Mach 2.0. Figures 8 and 9 show that the current
method can predict lifting force distribution in good accuracy
and the results are close to those of the supersonic capability,”
with some improvement in the LE vicinity.

Prediction Variations with Respect to Planform Shape

With the gradient-based optimization applications in mind,
sensitivities with respect to shape changes are examined for
smoothness. In the following calculations, wing root chords
are used as length reference scales.

The first test case uses the 60-deg sweptback wing shown
in Fig. 8a, at a speed of Mach 1.44. The semispan of the wing
is changed from the base design, Yr = 0.925-0.740 (—20%
change of the base design), without changing the x locations
of the tip chord LE and TE points. This results in a variation
of the sweep angle from 60 to 65.2 deg. One-hundred steps
are calculated on the Yy interval [0.740, 0.925] on a 10 X 10
grid, and the total LE C7 and its sensitivity with respect to Yz
are shown in Fig. 10. The step size used for semianalytic sen-
sitivity evaluation is 0.001, whereas the step size of the varying
Y, coordinates is 0.00185. Although some small fluctuations
are visible in the sensitivity curve, thrust prediction changes
quite smoothly with the variation of the Yx.

The present work was in part motivated by the report on the
oscillatory drag predictions affecting the convergence of an
HSCT design process.'® It is interesting to see how well the
current method works when applied to the same problem. A
planform similar to the one discussed in Ref. 18, and shown
in Fig. 11, is used for the test. At Mach 2.4, calculations are
carried out on an uneven 20 X 20 mesh for 200 steps of Xi»
varying from 0.680 to 0.808, which corresponds to variation

60° Swept Back M=1.44
Total Suction C..
------- Sensitivity 0C/0Y,

0.65

0.60

0.55

0.45 : :

Fig. 10 Variations of the LE thrust and its sensitivity with re-
spect to Y, vs Y. for the constant-chord sweptback wing, calcu-
lated on a 10 X 10 mesh.
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Fig. 11 Geometry of an HSCT planform.
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0.026 -
0.024 -
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Fig. 12 LE thrust force vs sweep angle for the HSCT planform
at Mach 2.4, on a 20 X 20 mesh.
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Fig. 13 Variations of the LE thrust and its sensitivity with re-
spect to X vs sweep angle for the HSCT planform, calculated on
a 20 X 20 mesh.

of the inboard LE sweep angle from 77 to 79 deg. Figure 12
shows the variation of the ratio C;/C;. No oscillatory behavior
was found in the results. Semianalytic sensitivity with respect
to Xip is also calculated for step size 0.001 and shown in Fig.
13 along with the variation of the total thrust force. Tests
showed that larger step size would smooth out the small os-
cillations of the sensitivity. However, small fluctuations in sen-
sitivity values, of the order shown in Fig. 13, are not expected
to cause any problem in gradient-based optimization. It is
nonsmooth functional behavior, leading to large variation in
sensitivity, which leads to convergence problems in gradient-
based optimization.

Attainable thrust results are not presented in this paper. It is
noted that typical empirical formulations, which use the the-
oretical LE thrust to obtain the attainable thrust, are explicit
and continuous in the parameters involved.’® Thus, for plan-
form shape changes, smooth variations of the full thrust force
should be expected to result in smooth attainable thrust eval-
uations.

It should be emphasized here, that, depending on the
changes in wing planform and the resulting changes in Mach
line patterns over a supersonic wing, there can be situations in
which discontinuities in the derivatives of generalized normal
loads and thrust forces may appear.”' The importance of over-
coming the numerical noise and wiggly behavior of aerody-
namic force prediction by the development of the present ca-
pability and of those discussed in Refs. 21 and 22, is that when
discontinuities appear, they represent actual behavior of the
wing.

Conclusions

To capture the LE singularity, yet to keep the flexibility of
panel-type methods for steady/unsteady aerodynamics of gen-
eral supersonic wing/control surface configurations, an LE
weighting function technique is proposed. Design-oriented
analysis is pursued in an effort to obtain reliable sensitivity
predictions in addition to accurate analysis results. Of special
concern is the elimination of numerical noise in the predicted
analysis results, reported with existing, widely used supersonic
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wing design codes. The current capability yields accurate LE
thrust force predictions, accurate normal generalized forces,
and accurate, smooth sensitivities with respect to planform
shape. It is suitable for applications in gradient-based wing
multidisciplinary optimization, without the need for any spe-
cial processing of its predicted analysis and sensitivity results.
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